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A REMARK CONCERNING m-DIVISIBILITY 
AND THE DISCRETE LOGARITHM 

IN THE DIVISOR CLASS GROUP OF CURVES 

GERHARD FREY AND HANS-GEORG RUCK 

ABSTRACT. The aim of this paper is to show that the computation of the discrete 
logarithm in the m-torsion part of the divisor class group of a curve X over 
a finite field ko (with char(ko) prime to m), or over a local field k with 
residue field ko, can be reduced to the computation of the discrete logarithm 
in k0(4m)* . For this purpose we use a variant of the (tame) Tate pairing for 
Abelian varieties over local fields. In the same way the problem to determine 
all linear combinations of a finite set of elements in the divisor class group of a 
curve over k or ko which are divisible by m is reduced to the computation 
of the discrete logarithm in ko(Cm)* - 

1. RESULTS 

Let ko be a finite field with q elements and X0 a projective irreducible 
nonsingular curve of genus g over ko. For simplicity we assume that the curve 
X0 has a point P0 which is rational over ko. Let Divo(Xo) be the group of 
divisors of degree 0 on X0. In particular, the set of divisors of functions on 
X0 is a subgroup of this group. The quotient group, i.e., the group of divisor 
classes of degree 0, is denoted by Pico(Xo) . We consider a positive integer m 
which divides q - 1. Then m is prime to the characteristic of ko and the 
mth roots of unity are contained in ko. We denote by Pico(Xo)m the group 
of divisor classes whose m-fold is zero. We want to treat the problem of the 
discrete logarithm in the group Pico(Xo)m: Let D1 and D2 be given elements 
in Pico(Xo)m with D2 = #D1 and i E N; then evaluate the integer i (notice 
that the group law in Pico(Xo) is written additively, contrary to the notation 
"discrete logarithm"). In particular, we want to reduce this problem to the 
corresponding one in the multiplicative group ko: Given elements q and 4 of 
ko with an integer ,u such that 4 = q/i; determine this element ,u. 

It is not our aim to give explicit formulas for the addition law in Pico(Xo) . 
We want to assume that the elements in Pico(Xo) are represented in the fol- 
lowing way: The theorem of Riemann-Roch asserts that each class of Pico(Xo) 
contains a divisor of the form A - gP0, where A is a positive divisor on X0 
of degree g (without mentioning it explicitly, we mean that the divisor A is 
rational over ko). If A is given as A - = Pi, then the points Pi on Xo are 
rational over a finite extension of ko of degree g!. Notice that this degree is 
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independent of the field ko. Now we assume that we know the surjective map 
cg which assigns to each positive divisor A of degree g the class cg (A) = 
A - gPo in Pico(Xo); furthermore, the addition in Pico(Xo) should be given 
explicitly, in other words, we assume that it is possible to solve the following 
problem in a fixed number of elementary operations in ko: 

Let A1 and A2 be positive divisors of degree g on XO; find a 
(*) positive divisor A3 of degree g and a function h on Xo such 

that the divisor of h is equal to A1 + A2 - A3 - gP 0. 

In the following the evaluation of (*) will be called a step. 
In general it will be hard to satisfy these assumptions. We will give two 

examples where the solution of the computational problems in Pico (Xo) is well 
known: 

Examples. (a) If XO is an elliptic curve given by an affine equation y2 = x3 + 
ax + b, let Po be the point at infinity. Then three points Pi (i = 1, 2, 3) 
with coordinates (xi, yi) satisfy P1 - Po + P2 - Po + P3 - Po = 0 in Pico(Xo) 
if and only if the points (xi, yi) (i = 1, 2, 3) lie on a straight line l(x, y) . 
Furthermore, P1 - Po is the inverse of P2 - Po if and only if xl = x2 and Yi = 

-Y2. Hence, the function h in (*) is given by the equation l(x, y)/(x - X3) . 
(b) If XO is a hyperelliptic curve, then the addition law (*) can be given by 

a reduction algorithm (see, e.g., [2]). 

The key point in the following is the construction of a nondegenerate pairing 
and the estimation of its computing time. 

Notation. Let D be a divisor with D E Pico(Xo)m, and let E = Er=1 aiPi 
(ai E Z, Pi on Xo) be an element in Divo(Xo) such that D and E have no 
points in common; furthermore, let f be a function whose divisor is equal to 
mD. Then define f(E) := Hi=1 f(p.)ai 

Theorem. If m divides q - 1, then the assignment {D, E}o, m := f(E) defines 
a nondegenerate bilinear pairing 

{ , }o,.m PicO(Xo)m x Pico(Xo)/m Pico(Xo) ) ko*lko* 

For given D and E the value f(E) can be evaluated in log m steps, i.e., one has 
to perform log m times a fixed number of elementary operations in an extension 
field of ko of bounded degree. 

In ?2 we show that { , Io,m is indeed a nondegenerate pairing; this is the 
crucial part of the theorem. Finally, in the third section the complexity of the 
evaluation of f (E) is studied. 

From this thecrem we get as a corollary the reduction of the discrete loga- 
rithm. 

Corollary 1. Under the condition of the theorem (especially when m divides 
q - 1) the evaluation of the discrete logarithm in the group Pico(Xo)m can be 
reduced to the corresponding evaluation in ko* in a probabilistic polynomial time 
in logq. 
Proof. Using the zeta function of the curve XO over ko, one gets # Pico(XO) = 

H2g (1 - woi), where wti are complex numbers with I oi q1/2. Therefore, 
logim = O(logq). 



in-DIVISIBILITY AND THE DISCRETE LOGARITHM 867 

The first step is to evaluate bases of Pico(Xo)m and of Pico(XO)/m Pico(Xo) 
in a probabilistic polynomial time in log q. As was pointed out before, each 
element in Pico(Xo) has a representative of the form Pi - gPo, where Pi 
are points on XO which are rational over an extension lo of ko of the fixed 
degree g!. Hence the task is to find enough points of XO which are rational 
over lo. We use the following facts: 

1. There is an irreducible polynomial F(X, Y) E lo[X, Y] whose degree 
in Y is bounded by g such that (up to a finite set whose cardinality is bounded 
by g) the zeros of F(X, Y) in lo are the l0-rational points on XO. 

2. By the theorem of Riemann-Roch we have I#Xo(lo)-#lo- 11 < 2g(#lo)1/2 

Hence there is a positive probability, depending only on the genus g, that to a 
value x E /o there is a y E /o such that F(x, y) = 0. Note that the existence 
of y can be tested in a probabilistic polynomial time in log q by Berlekamp's 
algorithm. 

From this, one sees that it is possible to find an element in Pico(Xo) in a 
probabilistic polynomial time in log q; and since multiplication by m needs 
only O(log q) steps, the same is true for an element in Pico(Xo)m in all inter- 
esting cases where m is of the same size as q, i.e., !- is bounded by a small 
integer. 

The next task is to determine generators of Pico(Xo)m in a probabilistic 
polynomial time in log q. For the sake of simplicity we explain this in the 
special case that m is prime. Then Pico(Xo)m is isomorphic to (Z/mZ)r, 
where r is bounded by 2g. The probability that r elements form a ba- 
sis of Pico(Xo)m is positive and independent of q. The same is true for 
Pico(Xo)/mPico(Xo). If one wants to verify that one actually has bases of 
Pico(Xo)m and Pico(Xo)/m Pico(Xo), one uses the nondegenerate pairing 
{ , }Om of the theorem. Since the evaluation of { , }o, m can be done in 
log m steps, it is possible to find bases in a probabilistic polynomial time in 
log q. 

Now let {E1, ..., Er} be a basis of Pico(Xo)/m Pico(Xo). Let '1 and 
D2 be elements in Pico(Xo)m with D2 = ,uDI and ,u an integer. For each 
i = 1, ... , r we compute ii = {D,, Ei}o,m and Ci = {D2, Ei}0,m. This can 
be done in a polynomial time in log q . We get Ci- =j modulo ko*m for each 
i. Since the pairing { , }o,m is nondegenerate, there is a unique solution ,u 
(modulo m), which can be evaluated by an algorithm for the discrete logarithm 
in ko. 

Remarks. (1) The discrete logarithm for some finite fields ko* is known to be 
subexponential (cf. [7]). 

(2) We want to discuss the assumptions of the theorem in the case of an 
elliptic curve. Let Xo be an elliptic curve over a finite field ko with q (q = pf) 
elements. The theory of the zeta functions yields (cf. [9]) 

#Pico(Xo) = (1 - w)(1 - co), 

where co, co are complex numbers with woco = q and IwoI = -coI = ql/2 If ko 
is an extension of ko of degree n, then 

#Pico(Xo x ko) = (1 - w,n)(1 - Con). 
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If the elliptic curve is supersingular, i.e., p divides co + co, then (on = con for 
n = 1, 2, 3, 4, or 6 (cf. [9], see also the discussion in [5]). Hence, if m divides 
#Pico(Xo), then the mth roots of unity are contained in ko, where ko/ko is 
an extension of degree at most 6. 

Now let the elliptic curve be ordinary; i.e., p does not divide wO+co). Suppose 
m is a prime number which is inert in the imaginary quadratic field Q(wO). If 
m divides # Pico(XO), then the mth roots of unity are contained in ko . Hence, 
the only possible pairs (Xo, m) where the assumptions of the theorem are not 
satisfied are ordinary elliptic curves XO and integers m which are decomposed 
in the field Q (w) . 

(3) The authors of [5] use the Weil pairing to reduce the discrete logarithm 
of elliptic curves to the discrete logarithm of the multiplicative group. If one 
uses the Weil pairing, one must assume that all the m-torsion points of the 
elliptic curve are defined over ko . This implies that ko contains the mth roots 
of unity. But the converse is not true in general. However, the main advantage 
of our pairing is the following. If the genus of XO is greater than 1, it is 
much weaker to assume that the mth roots of unity are in ko than forcing 
all m-torsion points to be defined over ko. Also, a generalization of the Weil 
pairing algorithm, which is indeed possible, requires calculations of functions 
on the Jacobian variety of the curve XO, whereas our algorithm only deals with 
tunctions on the curve XO itself. 

Examples of hyperelliptic curves. Koblitz [2] considers hyperelliptic curves 
for use as cryptosystems based on the discrete logarithm. As examples he gives 
curves XO of genus 2 over a finite field ko of characteristic 2 with the equations 
(a) v2+v = u5+u3 , (b) v2+v = u5+u3+u, or (c) v2+v = u5. Aneasy 
computation shows that if m divides # Pico(XO), then the mth roots of unity 
are contained in ko0 where ko/ko is an extension of degree n with n = 12, 6, 
or 4 in case (a), (b), or (c), respectively. Hence, the discrete logarithm of (ko)* 
is not too "complicated" compared with the logarithm in ko* . 

Changing the role of Pico(Xo)m and Pico(Xo)/m Pico(XO), one gets 

Corollary 2. Let E1, ..., Es be elements in Pico(Xo). The evaluation of the 
set 

{(Al, A ,S) E (Z/mZ)S | jE iE E m Pico(Xo)} 

can be reduced to the evaluation of at most (2g)2 discrete logarithms in ko* in 
probabilistic polynomial time in logq . 

Proof. Let {D1, ... , Dr } be a basis of Pico(Xo)m, which will be constructed 
as in Corollary 1. Let co be a primitive root in ko*. If one has aji E Z/mZ 
(j = 1,...,r; i = 1 ...,s) with {Dj Ei}o,m = cOai, then EZl AEL E 
m Pico(XO) if and only if (Ai, .I. , As) is a solution of the linear system 

s 

Zajii =_ O mod m (j = 1, ...,r). a 

i=l 

Remark. If k is a local field and X is a curve with good reduction at the 
valuation of k, then results similar to the theorem and the corollaries can be 
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proved. Indeed, in the next section we first study a pairing { , }M for the curve 
X over k and then reduce it to our pairing { , IO, m of the theorem. 

2. THE PAIRING 

Let k be a local field, i.e., k is either a finite extension of a p-adic field 
Qp or a power series field over a finite field Fq with q = pf . The field k is 
complete with respect to a discrete valuation v with residue field ko . By k we 
denote the separable closure of k, and Gk is the Galois group of k/k. 

Let X be a projective irreducible nonsingular curve of genus g over k. For 
simplicity we assume that X has a k-rational point. Let X be equal to X x k 
and XO be the special fibre of the minimal model of X with respect to v. We 
will assume that X has good reduction modulo v, and so Xo is a nonsingular 
irreducible projective curve over ko of genus g. 

Some more notation: Let k(X) be the field of functions on X; by Div(O) (X) 
we denote the Gk-module of divisors (of degree 0) of X, H(X) are the prin- 
cipal divisors, and Pic(o) (X) is the factor Gk-module Div(o)(X)/H(X). 

We have the following exact sequences of the Gk-modules: 

1 -k V k(X)* -) H(X) -> 0, 

0 -* H(X) - Divo(X) -* Pico(X) -* 0, 

and hence sequences of cohomology groups 

H2(Gk, k(X)*) 
9 H2(Gk, H(X)) -? H3(Gk, k*) = O, 

0 = H1(Gk, Divo(X)) -? H1(Gk, Pico(X)) -a H2(Gk, H(X)). 

Remark. We have HI (Gk, Divo(X)) = 0, because there is a divisor of degree 
1 in Div(X)Gk by assumption. 

For the following construction, cf. [3]. 
Take a cohomology class a E HI (Gk, Pico (X)), and let ,B be an element in 

H2(Gk, k(X)*) with 3(a) = (0(,B). Let D be a class in Pico(X)Gk = Pico(X) . 
It is easily proved (cf. [3]) that there is a 2-cocycle (fa,z)a,ZEGk E ,B and a 
divisor D E D such that for all a, T E Gk the principal divisor of fg,,, is 
prime to D. This allows us to define 

car,z := fa,z(D) := I|J fT(P) n, where D = npP. 
PEX(k) 

Again, it is not difficult to see (cf. [3] again) that (Cq,,I) is a 2-cocycle from Gk 
to k* and that its class [Ca,z] E H2(Gk, k*) depends only on a and D. 

Define (a, D) := [Cq,,]. An important result of Lichtenbaum [3] is 

Proposition 2.1. The map 

(, ): H1(Gk, Pico(X)) x Pico(x) - H2(Gk, k*) _ Q/Z 

is a nondegenerate pairing. 

Since HI (Gk, Pico(X)) is a torsion group, we can restate this proposition: 
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Proposition 2.1'. For all m E N we have a nondegenerate pairing 

( )m: Hl(Gk, PiCO(X))m X Pico(x)/mPico(X) * H2(Gk , k*)m - Z/mZ. 

Remark. A crucial step in the paper of Lichtenbaum is to show that (, ) is 
(up to a sign) equal to the Tate pairing (cf. [8]). 

From now on we assume that m is prime to the characteristic of ko. Our 
aim is to transform the pairing ( , )m into an easily computable form. At first 
we assume, in addition, that the mth roots of unity are contained in k. 

Lemma 2.2. Assume that the mth roots of unity are contained in k. Let ir be 
a uniformizing element of k, i.e., 7r generates the maximal ideal of v, and let 
(T) be the Galois group of k( V/ )/k . Then 

H1(Gk, Pico(X))m = infH1((T), Pico(X x k( ;7)))m 

= Hom((T), PiCO(X)m). 
Proof. The claim of the lemma is well known; for the convenience of the reader 
we repeat the arguments. Let ku be the maximal unramified extension of k. 
Since m is prime to the characteristic of ko, and since X, and so its Jacobian, 
have good reduction modulo v, it follows that H I(G(ku/k), Pico(X x ku))m = 
H2(G(ku/k), Pico(X x ku))m = 0. Therefore, the inflation-restriction sequence 
implies that 

H 1 ( Gk, Pico (X)) m = H(Gku , Pico (X))(m 
The exact sequence of Gku-modules 

0 -* Pico (X) m - Pico (X) Pico (X) -* 0 

yields 
0 -* H1(Gku a Pico(X)m) - H (Gku a PiCo(X))m 4 0, 

because Pico(X x ku) is divisible by m (again we use that X has good reduction 
modulo v and that m is prime to the characteristic of the residue field). But 
Gku acts trivially on Pico(X)m; therefore, we get 

H1(Gku, Pico(X))m = Hom(Gku, Pico(X)m). 

The maximal m-quotient of Gku is cyclic and equal to G(ku( (/)/ku); hence 

H1(Gk , Pico(X))m = Hom(G(ku ( V)/ku) , Pico(X)m) G(k /k). 

Since T commutes with each element of G(ku/k), the latter is equal to 
Hom((T), PiCo(X)m). *a 

Lemma 2.2 shows that the restriction of the pairing in Proposition 2.1', 

)m H1((T), Pico(X x k( V7)))m x Pico(X)/m * Pico(X) 

H2((T), k( 6n)*) 

is nondegenerate. Let (0 be the map which assigns to D E Pico(X)m the class 
of the 1-cocycle (fp)pE(,) with fi = D . It is another consequence of the lemma 
that ro is an isomorphism from Pico(X)m onto H1((T), Pico(X x k( ')))m . 

The group H2((T), k( V/7)*) is canonically isomorphic to 
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where Nk( /x)/k denotes the norm map. Since m is prime to the characteristic 
of the residue field koA, and since k( V/ )/k is fully ramified, the latter is iso- 
morphic to ko /ko m. We denote by V/ the isomorphism from H2((T), k( V/7)*) 
onto ko/kom. 

If we apply the isomorphisms ep and ,v, we get a nondegenerate pairing 
between PiCo(X)m and Pico(X)/m Pico(X) . 

We describe this pairing in a different manner. Take D E Pico(X)m and a 
divisor D E D; then mD is the divisor of a function f . Let E E Pico(X) be a 
representative of a class modulo m Pico (X), and let E be a divisor in E. We 
can choose E such that E and D are prime modulo v. Then f(E), which 
is by definition H f(p)nP, where E = E npP, depends only on the divisor of 
f . Now Weil reciprocity allows us to define {D, E}m := f(E) in ko/kom. An 
explicit calculation shows that { , }m is a new definition of the original pairing 
( , )m; i.e., we get 

Proposition 2.3. Let m E N be prime to the characteristic of ko, and assume 
that the mth roots of unity are contained in k; then 

{ , }m Pico(X)m x Pico(X)/mPico(X) - ko*/ko*m 

satisfies {D, E}m = VI((P(D) , E)m for each D E Pico(X)m, E in Pico(X). In 
particular, { , }m is nondegenerate. 

What can be done when the mth roots of unity are not contained in k ? 
Let Cm be a primitive mth root of unity, and let (a) be the Galois group 

of k(Cm)/k. We denote by Xm the cyclotomic character of (a) defined by 
a(Cm) = CXm( 

Now we consider the nondegenerate pairing of Proposition 2.3 for the field 
k(Cm) , 

{ I }m Pico(X x k(Cm))m x Pico(X x k(Cm))/m Pico(X x k(Cm)) 

-) ko(Cm)*/kO(Cm)*mm 

The group (a) acts on divisors, and the operation on k0(Cm)*/k0(Cm)*m is 
induced by Xm; hence we get 

{a(D), a(E)}m = {D , E}lmA(a). 

If [k(Cm) k] is prime to m, then the action of (a) is semisimple, and the 
decomposition in eigenspaces for characters yields a nondegenerate pairing 

{ a }m Pico(X x k(Cm))m[Xm] x (Pico(X x k(Cm))/m Pico(X x k(Xm)))(f) 
-- ko(Cm)*/kO(Cm)*m 

m 

where Pico(X x k (Cm))m[Xm] is the subgroup of elements D E Pico(X x k(Cm))m 
which satisfy a(D) = Xm(a)D. 

Again using the fact that [k(Cm) k] is prime to m, one sees that 

(Pico(X x k(Cm))/mPico(X x k(Cm)))(f) 

is canonically isomorphic to Pico(X)/m Pico(X) . This yields 
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Proposition 2.4. Let m E N be prime to the characteristic of ko. Let Cm be a 
primitive mth root of unity, and assume that the degree of k(Cm)/k is prime to 
m. Then { , }m is a nondegenerate pairing 

{ , }m Pico(X x k(Cm))m[Xm] x Pico(X)/mPico(X) -* ko(Cm)*/k0(Cm)*m 

Remark. Proposition 2.3 is a special case of the last statement. The assumptions 
of Proposition 2.4 are satisfied if m is a prime number different from the 
characteristic of ko. 

The definition of { , }m can be reduced modulo v to get a pairing corre- 
sponding to a curve over a finite field. 

Let XO be a projective irreducible nonsingular curve of genus g over a fi- 
nite field ko. Take Do E Pico(Xo)m and Eo E Pico(Xo), and choose divisors 
Do E Do and Eo E Eo which are relatively coprime. Then mDo is the divi- 
sor of a function fo, and we can define {Do, Eo}o,m = fo(Eo) in ko/kom. 
This definition only deals with curves over finite fields. In order to prove that 
{ , }0, m is nondegenerate, we take a local field k with residue field ko and 
a_curve X of genus g whose special fibre is Xo . It is not difficult to see that 
{Do, Eo}o, m = {D, E}m, where D, E are divisors whose reduction is Do, 
Eo, respectively. With this remark we get from Propositions 2.3 and 2.4 

Proposition 2.5. Let m E N be prime to the characteristic of ko. Let Cm be a 
primitive mth root of unity, and assume that the degree of ko(Cm)/ko is prime 
to m. Then the pairing 

{ a }o,m Pico(Xo x ko(4Cm))m[Xm] x Pico(X0)/mPico(X0) -k(Cm)* ko(Cm)*m 

is nondegenerate. 

If m divides q - 1 , then Proposition 2.5 shows the first part of the theorem 
in ?1. 

3. EVALUATION OF THE PAIRING 

In the previous section it was shown that the evaluation of the Tate pairing 
can be reduced to the following problem: Let k be a field whose characteristic 
does not divide m, and let X be a projective irreducible nonsingular curve 
over k of genus g. For elements D E Pico(X)m and E E Pico(X), take any 
divisor D E D and find a function f on X whose divisor is equal to mD; 
take a divisor E E E which is prime to D and then evaluate f(E) . 

In the following we present an algorithm for an evaluation of f(E) which 
takes O(log m) elementary operations. In order to achieve this, it is of course 
necessary to do explicit calculations in the group Pico(X). As it was pointed 
out in ? 1, we assume that we can do the following step: 

Let A1 and A2 be positive divisors of degree g; find a positive 
(*) divisor A3 of degree g and a function h such that the divisor 

of h isequalto AI+A2-A3-gPo. 

We denote by cg the surjective map which assigns to a positive divisor A of 
degree g the element cg(A) = A - gPo in Pico(X) (cf. ? 1). Let E be a divisor 
in Divo(X) whose support does not contain PO. Let S be a finite subgroup of 
Pico(X) . We suppose that S has a set of representatives {A,} under cg which 
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are prime to E. We fix such a set of representatives and define the following 
group law on S x k*: 

(Si, a,) ( (s2, a2) = (cg(As3), ala2h(E)), 

where As3 is the divisor and h is the function in step (*) corresponding to 
As1 and As2; furthermore, S3 is the sum of s, and S2 in S. The assumptions 
guarantee that h(E) is a nonzero element in k. 

Remark. For the theoretical background of this group law we refer to the theory 
of theta groups (cf. [6]). 

Lemma 3.1. Let E be a divisor in Divo(X) which is prime to Po, and let 
D E Pico(X)m; we suppose that the subgroup of Pico(X) which is generated by 
D has a set of representatives which are prime to E; the representative of 0 
should be gPo. Then 

(D, 1) (3 (D, 1) = (O, f(E)), 
m times 

where f is the function on X whose divisor is equal to mD. 

Proof. Let Ai be the representative of iD. One sees immediately that 

(D, 1) ?. 3(D, 1) = (iD, hi(E)), 
m times 

where hi has the divisor iAI - Ai - (i - 1)gPo. Since mD = 0 and Am = gP0, 
we get hm(E) = f(E) . 5 

With this lemma one can evaluate f(E) with O(log m) elementary opera- 
tions by using repeated doubling in the group ((D) x k*, 03) . 

Remark. If g = 1, one can use Lemma 3.1 to evaluate the Weil pairing of the 
elliptic curve X. These ideas are used in [1, 4]. 

Let D E Pico(X)m and E E Pico(X). In order to evaluate f(E) with 
Lemma 3.1, it is not necessary to assume that the divisor E E E is prime to 
the representative of each iD. Only those representatives are important which 
are used to perform the m-fold addition by the repeated doubling method. 
Hence E can be chosen in O(log m) steps. 

From this, we get 

Proposition 3.2. Let D E Pico(X)m and E E Pico(X), take divisors D E D and 
E E E which are relatively prime, and let f be a function whose divisor is mD. 
Then f(E) (modulo k*m) can be evaluated in O(log m) elementary operations. 
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